Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(22): 26237-26246, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038087

RESUMO

Renewable cellulose substrates with submicron- and nanoscale structures have revived interest in paper electronics. However, the processes behind their production are still complex and time- and energy-consuming. Besides, the weak electrolytic properties of cellulose with submicron- and nanoscale structures have hindered its application in transistors and integrated circuits with low-voltage operation. Here, we report a simple, low-cost approach to produce flexible ionic conductive cellulose mats using solution blow spinning, which are used both as dielectric interstrate and substrate in low-voltage devices. The electrochemical properties of the cellulose mats are tuned through infiltration with alkali hydroxides (LiOH, NaOH, or KOH), enabling their application as dielectric and substrate in flexible, low-voltage, oxide-based field-effect transistors and pencil-drawn resistor-loaded inverters. The transistors exhibit good transistor performances under operation voltage below 2.5 V, and their electrical performance is strictly related to the type of alkali ionic specie incorporated. Devices fabricated on K+-infiltrated cellulose mats present the best characteristics, indicating pure capacitive charging of the semiconductor. The pencil-drawn load resistor inverter presents good dynamic performance. These findings may pave the way for a new generation of low-power, wearable electronics, enabling concepts such as the "Internet of Things".

2.
Chem Biodivers ; 16(9): e1900275, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31407869

RESUMO

The açaí fruit depulping produces large amounts of long lignocellulosic fiber bundles that are disposed in the environment. Chemical pretreatments may improve açaí fibers favoring their usage in advanced materials. This work aimed to define optimal alkali reaction parameters to improve the properties of açaí fibers. Two NaOH concentrations (5 % and 10 %) and two reaction temperatures (80 °C and 100 °C) were tested. The raw and treated fibers were analyzed by scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and thermal analyses. All the alkali pretreatments separated fibers from the bundles, unblocked pit channels by removing silicon structures, exposed the inner lignin, partially removed non-cellulosic compounds, and raised the cellulose crystalline index. The highest temperature and NaOH content resulted in better cleaning and isolation of the fibers, while milder conditions better preserved the cellulose crystalline structure and thermal stability.


Assuntos
Lignina/química , Hidróxido de Sódio/química , Lignina/isolamento & purificação , Tamanho da Partícula , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...